大人の塗り絵:塗り分けに五色必要な地図(1975年のエイプリルフール)


4102184619四色あれば,地図上の隣り合う領域の色が同じにならないように塗り分けられるという「四色定理」は,1800年代後半に予想され,1976年にコンピュータを使って「証明」された。

定理が「証明」される前の1975年に,マーチン・ガードナーが塗り分けに五色必要だとして発表した次の絵が話題になったという。(参考:Martin Gardner's April Fool's Map

これはエイプリルフールのネタだったのだが,四色で塗り分けたという手紙が数百通届いたらしい。(ロビン・ウィルソン『四色問題』(新潮社, 2013)p.38)

この大人の塗り絵をやってみたい。

0387753664Mathematica in Action で,塗り分ける方法が紹介されているのだが,http://extras.springer.com/からダウンロードできるコードは,最近のMathematicaでは動かない。(Mathematicaの言語仕様は後方互換性を保持しながら進化しているのだが,外部パッケージが本体に取り込まれた場合は,大抵うまくいかない。)

そこで,簡易版を作る。領域の境界線が垂直または水平の2pxの黒い実線の場合にのみ対応するという意味で「簡易」である。

Importで画像を読み込み,MorphologicalComponentsで領域に分割する(Colorize[matrix]で描画)。

四色で塗り分ける。(参考:ヨーロッパの地図の4色を求める

色を1組の真偽値で表し,色が同じでないという条件を連言標準形で記述することで,高速化している。

細かい注意:上の結果は周りが海に囲まれていても大丈夫なように,条件を追加して求めたもので,このコードの結果とはちょっと違うものになっている。

最後の描画はColorize[matrix, ColorRules -> cTable]でもいいのだが,この関数にはバグがあり,Mathematica 10.4.1では正しく動作しない。(製造元には報告済み。Ver.11で修正された。

マルバツの部屋


人工知能の話題に「中国語の部屋」というのがあって・・・(以下略)

マルバツに負けないための手順がすべて書かれたを持った人が部屋にいて・・・(以下略)

そういうは実際に用意できます(クリックで拡大)。

先手版用(赤が先手・青が後手)

後手版用(赤が先手・青が後手)

同じ盤面に対応するノードが複数あるのは,手順をわかりやすくするためです。HTMLとCSSだけで作るマルバツのページ数は,上の絵のノード数より少なくなっています。

この絵の読み方を知ってさえいれば,マルバツの素人でもゲームに負けることはありません。

4535604215この絵を描ける私は,マルバツを理解しているつもりだったのですが,マーティン・ガードナー数学ゲーム全集の第1巻,マーティン・ガードナー『ガードナーの数学パズル・ゲーム』(日本評論社, 2015)を読んで,甘かったことを思い知らされました。楽しみな全集が出たものです。

「プレーヤーが最善を尽くせば引き分けになる」というのがマルバツの一応の結論ですが,それを知っていることは,マルバツのすべてを知っていることを意味しません。

たとえば,両者が最善を尽くせば引き分けという局面でも,相手が素人なら,勝率が高くなる手があります。

これは,人間がコンピュータ向けの手を打てば勝てるという囲碁の現状に似ています(参考)。将棋はあと10年もすれば,ソフトウェアが準最善手と人間に合わせた手を使い分けられるようになるかもしれません。

というわけで,少なくとも上述のを持った人がいるだけのマルバツの部屋は,マルバツのことはわかっていません。

魔方陣の解の数を一瞬で求めるプログラム


以前、「スパコンで約2時間36分かかったという、5×5の魔方陣の全解列挙を、パソコンで試す(C++)」という記事を書きましたが、解を列挙するのではなく、解の数を数えるだけなら一瞬で終わらせるプログラムがあります。

4×4の魔方陣の場合

clang++ -O3 -std=c++11 magicsquare4.cc」などとしてコンパイルしてから実行します。実行時間は一瞬です。

このプログラムの欠点は、コンパイルにかなりの時間がかかることです(TANSTAAFL)。手元の環境では、コンパイルに4分くらいかかりました(説明するのは野暮ですが、これはネタです)。

C++のconstexprを使っています。複数のコンパイラがconstexprをサポートしていますが、このコードをコンパイルできるのは、私が試したところではClang 3.3のみです(Ubuntuでは「sudo apt-get install clang-3.3」などとしてインストールできます)。ステップ数に上限が導入されたClang 3.4以降や、途中経過を記憶してメモリを圧迫するgccではコンパイルできません。

Clang 3.3でサポートされるconstexprの関数には、大ざっぱに言えばreturn文しか書けないので、マスに数が入るかどうかをチェックする関数を作り、「数がすでに使われていなければ次のマスを試し、使われていれば1だけ大きい数を再帰的に試す」ということを、return文の条件演算子で実現しています。

このコードは私が直接書いたものではなく、私が書いたプログラムが生成したものです(手で直接書くのは大変です)。同じプログラムで5×5の場合も生成しましたが、試すのはやめた方がいいでしょう(constexprを消してコンパイル・実行すれば、正しいことは確認できます)。

スパコンで約2時間36分かかったという、5×5の魔方陣の全解列挙を、パソコンで試す(C++)


追記:対称性の活用法をコメントで教えていただきました。それを採用すると本稿の結果よりもかなり高速になります(10分→6分)。(コード

筑波大学のスパコン「T2K-Tsukuba」で約2時間36分かけて5×5の魔方陣(≠魔法陣)の全解を求めたというニュースがありました。

「スパコン」ではなく「パソコン」だったらどうなのだろう、と思って試してみたら、10分でした(Core i7 4930K)。

解の「数」がわかればいいだけ、つまり全解をディスクに書き出さなくてももいいならもう少し早くなります。

コードはこちら(最初のバージョン)。頭の悪そうなコードですが、スクリプトで生成した枠組みを手直しして作れば、そんなに大変ではないかと。理想は全自動生成ですが。Visual Studio 2013 ExpressとICC 14.0.2、GCC 4.6.3、Clang 3.4で動作を確認しています。ClangはOpenMPに対応させるのが面倒なうえに、ちょっと試したところでは、GCCより遅かったです。(実際に試す場合は、OpenMPを有効にしてください。計算中のCPU使用率は100%になるはずです。)

多重for文(笑)ですべての場合を探索するというのが基本方針ですが、それではさすがに終わらないので、次のような工夫をします(工夫というほどのものではありませんが)。

  • 各行・各列・対角線の和は65。(1から25までの和 / 5)
  • (カンで)効率が良くなりそうなところから順番に埋めていく(下図の番号順)。
  • 回転と裏返しで同一になるものを重複して数えないように、下図の緑部分に、「左上<右上<左下」かつ「左上<右下」のような制約を入れる。左上は22以下としてよい。
  • a+b+c+d+eのうち、a,b,c,dが決まったら、e=65-a-b-c-dになる(下図の紫部分)。
  • a+b+c+d+eのうち、a,b,cが決まったら、dはmax(1,65-a-b-c-25)からmin(25,65-a-b-c-1)の範囲で調べればよい。max(un,65-a-b-c-ux)からmin(ux,65-a-b-c-un)にするとさらに速くなる(unは未使用の最小数,uxは未使用の最大数。これを調べるのに時間をかけると効果はなくなる)。

この方針の場合、ループを関数で表現したり、盤面をコンテナで表現したりすると遅くなります。

数を埋める順番
6 10 11 12 8
20 1 18 2 21
22 13 5 16 23
24 3 19 4 25
9 14 17 15 7

魔方陣の解の列挙は並列化しやすそうな問題ですが、ここでの方針では、探索効率を上げるためには条件分岐が不可欠なので、(「数」を求めるだけだとしても)GPGPUでうまくやる方法がわかりません。そこで、CPUに載っているコアのみで並列化します(Xeon Phiなら簡単なのでしょうか→追記参照)。

一番外側の、0から(1<<25)-1まで変化する変数iのループをOpenMPで並列化します。変数iは上の図の緑の部分(カンで5個にしました)を各数5ビットで表現し、つなげたものです。マスに入りうる数は1から25までなので、5ビットというのはちょっと冗長ですが、とりあえずはよしとしましょう。

一番外側の、0から(N – 3) * N * N * N * NN^4 + N^3 + 2N^2 + 3N + 4から(N – 4)N^4 + (N – 1)N^3 + (N – 2)N^2 + (N – 3)N + (N – 4)まで変化する変数iのループをOpenMPで並列化します(schedule(guided)では遅くなります。schedule(auto)はVisual C++でサポートされたら試します)。変数iは上の図の緑の部分(カンで5個にしました)を掛けたものです。

出力はバイナリ形式で、1つの解に25バイト使います(1つのマスに入る数を1バイトで表現する)。これはちょっと冗長ですが、テキスト形式よりは小さくて速いはずなので、とりあえずはよしとしましょう。

解は全部で2億7530万5224個、1つの解を25バイトで表現するので、(スレッド数と同数できる)出力ファイルのサイズの合計は275305224 x 25 = 6882630600バイト(約6.4GB)になります。

最初のバージョンの実行時間は以下の通りです。最終的には、先述の通り、もう少し速くなります。

Core i7 4930K(12スレッド・出力先はRAMディスク)
  • Windows 7 64 bit, Visual Studio 2013 Express, 593秒(約10分)(ターゲットはx64。/openmp /Ox /arch:AVX
  • Fedora 20 64 bit, Intel C++ Compiler 14.0.2, 471秒(約8分)-fopenmp -O3 -xHost
  • Fedora 20 64 bit, GCC 4.8.2, 583秒(約10分)-fopenmp -O3 -march=native
Core i7 4700MQ(8スレッド・出力先はSSD)
  • Windows 7 64 bit, Visual Studio 2013 Express, 1156秒(約20分)/openmp /Ox /arch:AVX

4535786569大森清美『魔方陣の世界』(日本評論社, 2013)(参考文献リストあり・索引あり)を見たら、a+b+c+d+e=65のとき、(26-a)+(26-b)+(26-c)+(26-d)+(26-e)=65なので、解の、すべての数xを(26-x)に置き換えたものもやはり解になるということが載っていました。変数x7を13以下に限定して、「x17 < 13 && x19 < 13」のときのcountsの増分を2にすれば、私のコードでもこの知識を活用できますが、やっても速くはなりませんでした。この知識を使えばもっと速くなるでしょう(ここでは試しませんが)。コメントでご指摘いただいたように、この知識を使って、真ん中のセルに入る数字を1から13までに限定し、そこが13ではない解が見つかったら、すべての数xを(26-x)に置き換えたものも解として出力するようにするとさらに速くなります(同条件でちょうど6分)。

『魔方陣の世界』では、この問題のためのコードも紹介されていますが、並列化されていないこともあって、解の「数」を調べる場合は約5000秒(確認済み)、全解を出力する場合は約3日(未確認)と、あまりふるいません。

この問題は、パソコン・プログラミングに最適の題材である。(p.111)

今日では、5次方陣の総数検索問題は、パソコンに最適な題材となった。(p.124)

パソコンに最適とも、スパコンに不適とも思いませんが、興味深い題材であることは確かです。

追記

  • 正解の数(2億7530万5224個)を知っているから速いのか? 正解の数は1981年にはすでに知られていましたが、ここで試した方法では、その知識は使っていません。ディスクの空き容量は小さくてよいことがわかっているとか、下に書くような理由で、正解が既知だと試すのが気楽だということはあります。
  • 結果の正しさをどうやって確認したのか? 確認していません。解の数は既知なので、それと同じ数が出てくればまあいいかなと。正しさを確認するためには、(1)得られたものが本当に解であること、(2)結果に重複がないこと、(3)すべての場合を調べていること、の確認が必要です。(1)はループの最も内側で解になっているかどうかをチェックすることによって、(2)は得られた解をハッシュテーブル等に格納することによって確認できますが、ある程度のメモリと時間(上のマシンだと約200秒)が余分に必要です(コード)。(3)はここでは難しいですね。
  • アルゴリズム? 穴埋め問題の穴を多重for文(笑)で埋めているだけなので、アルゴリズムというほどのものはありません。(参考:Puzzles for Hackers
  • 10分くらいならやってみようかなという人が、きれいな書き方やGPUで解く方法、効率的な方法を見つけてくれればと思います。(参考:Toy problemsは役立たずか
  • Xeon Phiなら(ほぼ)そのままのコードが動いて、計算は5分で終わるそうです。(スパコンで約2時間36分かかったという、5×5の魔方陣の全解列挙をXeon Phiで試す - パラレルに恋して

Toy problemsは役立たずか(Floydの問題・ネタバレ)


U = {√1, √2, …, √50}を2つのグループに分け、グループ毎の和を求める。和の差がなるべく小さくなるようなグループ分けを、制限時間10秒で見つけよ。

1881526917先日紹介したFloyd問題です。

10秒という制限時間で、2の49乗個の候補の中から最良のものを見つけ出すのは、1977年当時のコンピュータでは難しかったはずです。そこでKnuthは、以下のような工夫をしました。

  1. まず小数部分を近づけることを目指し、その後で整数部分を近づける。(この問題では結果オーライ。√40までの場合はうまくいかない。)
  2. I = {√1, √4, √9, √16, √25, √36, √49}は、和の整数部分にしか関与しないから後で考えることにする。
  3. Uを2つのグループAとBに分け、Aの部分集合とBの部分集合の合計の小数部分を、全体の合計の半分の小数部分に近づける。
  4. Aの部分集合の小数部分をすべて記録しておき、Bの部分集合に対して、上の条件に会うようなAの部分集合がすぐに見つかるようにする。
  5. 部分集合の生成にはグレイコードを使う。
  6. X = {√2, √8, √18, √32, √50}の組み合わせでできる和は16通りしかないことを利用する。同様に、Y = {√3, √12, √27, √48}の組み合わせでできる和は11通りしかないことも利用する。
  7. 集合をA = X ∪ Y ∪ {√5, √6, √7, √10, √11, √13, √14, √15}、B = U – I – Aとする。

今日のコンピュータは当時と比べればはるかに強力なので、これらの工夫のうちの1から4を採用するだけで、あとは富豪的なプログラムでも最良解を見つけるのに5秒とかかりません(コード)。本稿執筆時点のideone.comで約2.5秒(double)あるいは約2.8秒(long double)、私のデスクトップ(Core i7 950 3.07Ghz)のVisual C++で約1.3秒でした(いずれもシングルスレッド)。

4774157155Aの部分集合の記録には、C++11で導入されたunordered_multimapを使いました。キーAのサブセット和の小数部分8桁を、値はサブセットを表現する整数とサブセット和のpairです(この実装では、mapよりunordered_mapのほうがかなり速いです)。sizeAを20にしたり、keyを小数点以下8桁にすると速いのは、動かしてみてわかったことです。