『アナイス・ニンの日記』新訳


『アナイス・ニンの日記』(水声社, 2017),重要文献の邦訳(一部新訳)である。

アナイス・ニンの日記には,初期(4巻)と編集版(7巻),無削除版(6巻)があり,一部はすでに翻訳されている。今回翻訳されたのは,下の塗りつぶされた部分の抜粋。

初期(4巻)

  • 1914–1920: Linotte (Vol. 1) 『リノット』
  • 1920–1923: Vol. 2
  • 1923–1927: Vol. 3
  • 1927–1931: Vol. 4

編集版(7巻)

無削除版(6巻)

今回の翻訳は当初,次のような計画だったらしい。

当初は,編集版・初期・無削除版の三シリーズを網羅する抄訳を,杉崎和子さんとわたしの共訳で出版する予定だった。(編訳者より)

計画どおりに上記の全17巻すべてを網羅していれば「決定版」となっただろう。無削除版がまったく入っていないのが特につらい。フィリップ・カウフマンの映画から来る読者のための最初の1冊が『ヘンリー&ジューン』であることは変わらずか。

フリーソフトウェアで風景から歩行者を消す方法(FFmpeg, ImageMagick)


先日「風景から歩行者を消す手軽な方法」をMathematicaで実装したのですが、「なんでMathematica? 持ってないし。高いじゃん」という意見があったので、フリーソフトウェアを使う方法を紹介しましょう。「風景から歩行者が消えていく様子」が要らないならこれで十分かも知れません。(Raspberry PiのMathematicaなら無料なのですが、非力なのでこの話には使いにくいでしょう。)

Ubuntuで試します。(WindowsでもFFmpegとImageMagickを入れればできるかもしれません。)

sudo apt-get install libav-tools imagemagick

ffmpegで動画を画像に分解し、convertでまとめます。(Ubuntu 14.04ではffmpegavconvに置き換えてください。)

ffmpeg -i movie.mov -f image2 %d.png
convert -evaluate-sequence mean *.png mean.jpg

meanmedianに置き換えれば平均ではなく中央値を使うようになりますが、処理時間がかなり増えます。

風景から歩行者が消えていく様子


先日紹介した「風景から歩行者を消す手軽な方法」は、動画の画素ごとに時間について平均をとると動いているものを消せるという話でした。

この方法について、(1)平均ではなく中央値や最頻値を使った方がいいのではないか、(2)シャッターを開きっぱなしにするのと同じではないかと言われたので、お答えしようと思います。(ネタを引きずるのはよくないのですが。)

(1)については、やっていることの意味からすればその通りです。しかし、中央値や最頻値は平均に比べて計算負荷が高いので(前記事の追記も参照)、動画という重いデータを扱う際には、そこにこだわるべきではないと思います。簡単なものをまず試し、できたらそれでよしとするわけです。例えば、ウェブカメラの画像を取得するCurrentImage[]を使って、先の話のリアルタイム版を作れるのですが、平均でやるなら次のように簡単です(Mathematica)。

t = 1;
accumu = ImageData[CurrentImage[]];
Dynamic[Refresh[Image[accumu/t], TrackedSymbols -> {t}]]
(*ここに動画が表示される*)
While[True,
  accumu += ImageData[CurrentImage[]];
  t++;
  Pause[0.1]];

いいウェブカメラがあれば、下のような動画が見られるはずです。(実時間だと速くてよくわからないので、最初の5秒を30秒に引き延ばしたのが冒頭の動画です。)

これを中央値や最頻値でやろうとすると、すぐにメモリがなくなるでしょう。最頻値の場合は数値の揺らぎの程度(あるいは数値を丸める必要の有無)も確認しなければなりません。

(2)の方法は知らなかったのですが、上のような動画を作るのはちょっと面倒なのではないでしょうか。

風景から歩行者を消す手軽な方法


固定したカメラで撮った動画で、画素ごとに時間について平均を取れば、(適当な速度で)動くものを消せます。Mathematicaだとこんな感じです。(参照:フリーソフトウェアを使う方法

Export["result.jpg",
 Image[Mean[Map[ImageData,
    Import["movie.mov", "ImageList"]]]]]

おまけ:フレームの平均を計算していく過程(最初の5秒を30秒で)
詳細:風景から歩行者が消えていく様子(リアルタイム版)

追記:画質的には平均ではなく中央値や最頻値を使った方がいいかもしれませんが、「手軽」ではなくなります。「平均でもできるんだ」という「手軽」さの実例だと理解していただければと思います。

中央値:MeanMedianに置き換えるだけで試せますが、計算時間・消費メモリともに増大します。平均なら約90秒で終わるこの動画(1280x720x372フレーム)の処理に約450秒かかります。消費メモリは2倍くらいになるようです(Core i7 4700MQ、メモリ16GB、Windows 7 64bit、Mathematica 9.0.1)。

最頻値:中央値と同様、計算負荷が高くなります。数値の揺らぎも心配です。Mathematicaの最頻値(Commonest[])は戻り値がリストなので、コードの書き換えも面倒です。

カメラからの入力を「手軽」にリアルタイム処理する場合にも、やはり平均を使うのがいいでしょう。

言の葉の庭


B00BQA8I66980センチメートル毎秒毎秒(靴の加速度)、みたいな話を勝手に期待していたのですが、思わず「ねえよ」と言ってしまったところが一番の盛り上がりでした。

メジャーなアニメでマニアックな靴づくりの話なんて、あるわけないですよね。ごめんなさい。

3848003686Z会のアニメ内広告から伝わる現実感が印象的でした。それだけリアリティを追求した作品で、『Handmade Shoes for Men』(作品中では『Handmade Shoes』)という、安いというかコストパフォーマンスのよい、決して高価ではない本をプレゼントされた少年に、「こんなに高い本、ありがとう、ございます」と言わせる大人って、残酷ですね。

488393764X三澤則行監修『紳士靴を仕立てる』(スタジオタッククリエイティブ, 2016)なんかもお勧めです。