縦と横にしか動けない世界で(1994年東京大学入学試験理系数学第6問)


1994年の東京大学の入学試験、理系数学第6問は次のようなものでした。

平面上の2点P, Qに対し、PとQをx軸またはy軸に平行な線分からなる折れ線で結ぶときの経路の長さの最小値をd(P, Q)で表す。

(1) 原点O(0, 0)と点A(1, 1)に対し、
d(O, P)=d(P, A)を満たす点P(x, y)の範囲をxy平面上に図示せよ。

(2) 実数a>=0に対し、点Q(a, a^2+1)を考える。
次の条件(*)を満足する点P(x, y)の範囲をxy平面上に図示せよ。
(*) 原点O(0, 0)に対し、d(O, P)=d(P, Q)となるようなa>=0が存在する。

この問題は、d(O, P)=Abs[x]+Abs[y]であることがわかれば解けます。d(O, P)=Sqrt[x^2+y^2]ではありません。

Mathematicaで試します(UMMでも動きます)。

(*1*)
d[p_, q_] := Total[Abs[p - q]]
expr = d[{0, 0}, {x, y}] == d[{x, y}, {1, 1}];
cond = Reduce[expr, {x, y}, Reals];
reg = ImplicitRegion[cond, {x, y}];
RegionPlot[reg, PlotRange -> {{-2, 2}, {-2, 2}}]

(*2*)
expr = Exists[a, a >= 0,
   d[{0, 0}, {x, y}] == d[{x, y}, {a, a^2 + 1}]];
cond = Reduce[expr, {x, y}, Reals];
reg = ImplicitRegion[cond, {x, y}];
RegionPlot[reg, PlotRange -> {{-2, 2}, {-2, 2}}]

描画領域の境界にも実線が引かれている、という問題がありますが、とりあえずはこれでいいでしょう。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です